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ON THE THEORY OF CONDITIONING IN POINT PROCESSFS

by Olav Kallenberg, Goteborg, Chapel Hill, Auburn

!. Introduction

By a point process we mean a random configuration of isolated points

in some topological space. Point processes arise naturally in a

Qreat variety of contexts, both theoretical and applied.

In a physical or biological application, the 'points' may

e.g. be the positions of particles or organisms, whereas in queuein"

theory they may be the arrival times of customers. However, the scope

of aDlications is not restricted to situations describable in terms

of discrete points, since other types of geometrical objects, such

as planes or circles, may be identified with points in suitable

parameter spaces. In theoretical applications, the 'points' may be

the level crossings of a random process, or the times and sizes

of its jumps. Following Ito, we may further consider the point

process of excursions from a fixed state of a Markov process,

marked in a diagram versus local time at that state. In general, it .4 •

seems that a point process description may be fruitful whenever

there are random objects which may be counted.

Mathematically, point processes may be described as locally -

finite random sets. Since the counting properties are fundamental,

it is often convenient to identify the collection of points with

the associated counting random measure. Conversely, every integer

valued random measure on a sufficiently nice space is the counting

measure of some locally finite random set, provided the 'points'

are allowed tc have multiplicities.

In the sequel, we shall only consider simple point processes ,

where no multiplicities occur. For convenience, the topological .-..

space S where = is defined will be taken to be a locally compact

%..--.
V . %-- .
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second countable Hausdorff space. The number of points B in a

bounded Borel set BcS will be assumed to be finite and measurable, .

hence a random variable.

Given a point process E, it is natural to look at the conditional

distribution of (or of some other random object defined on the

same probability space), given some partial information about ,

such as the configuration in some subset. In statistical mechanics,

for instance, one is interested in descriptions in terms of the

interaction potential between the particles of the conditional

distribution in a bounded set B, given the configuration outside.

Another type of conditioning is to specify a number of points

of c., and to ask for the distributional properties of the remainder

of the point process. This kind of conditioning arises naturally

in the context of queueing systems, when one wants to describe

what happens to a 'typical' customer.

A third type of conditioning arises if one wants to descri.be

a point process of events on the time axis in a dynamical way, .,.

and look at the conditional probability of having an event in a

small time interval dt, when the history up to time t is known.

This leads to the familiar and powerful martingale approach to

point processes. If the time axis is replaced by some more general

space, the possibility of a dynamical description is lost, but it

still makes sense to consider the conditional contribution to a

space element dt, given the configuration outside t. Such ideas

have turned out to be useful in stochastic geometry.

Historically, theories of conditioning have been developed

independently in the different situations described above. It was

only recently that the various aspects of conditioning could be

merged into an allembracing and systematic theory of conditioning

J. e .%



in point orocesses. Here we shall briefly outline the contours of %%

this theory. For further information, as well as for historical "-.

remarks and complete bibliography, the reader is referred to

Kallenberg (1983/86) and Kallenberg (1984).

2. Palm measures

Univariate Palm probabilities were introduced in 1943 by the Swedish

mathematician and engineer C. Palm in an extensive but non-rigorous

study of telephone congestion. Hinchin later adopted some of Palm's

ideas for his 1955 monograph on queuing theory, hence the name

Palm-Hinchin theory for the early developments in this area.

However, the modern theory of Palm distributions and Palm measures -

originated with Ryll-Nardzewski's approach of 1961.

Here the reduced Palm distribution Q of a point process at

the point s"S is defined a.e. as the Radon-Nikodym. derivative

ET (ds) 6sEA
Qs(A) , s S. (1)

Note that this approach requires the intensity measure EE to be

a-finite. Similarly, the multivariate (reduced) Palm distributions

are given by
EL(n) (dsl.''ds -- A

I''.... Sn E (n) (dS .ds)
(n) n

where denotes the restriction of the product measure E .. x

to the set where all coordinates are distinct. It is understood

that regular (i.e. measure valued) versions should be chosen in

(1) and (2). Thus these formulas define disintegrations of the so
______________C, ad C on ad E (n)

calied Campbell measures C and C on the right. When E- and E n
± n '. -

are infinite, it is still possible to obtain disintegrations

C (B .A )  =';q l' sn A -n d I  ".dens (3) ..

"B l'* n

for some suitable supporting measures V and Palm measures a
n oo. 

s n %S
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where the latter may now be unbounded and are unique only up to an .-

arbitrary normalization. The final step is to put Q Q ori" "s n.Q

=aS.Sn for a 'inite countina measure P with atoms at sI ...S.

The conditioning interpretation of the kernels Q and a may be

ustified in various ways. One is to show that u can be approximated

by the conditional distribution of outside the support of , given

that f has 'points' within small neighbourhoods of s, ..... s. Thus

K may indeed be thought of as the conditional distribution of g-u,

given that £>u" The interpretation of q is similar.

Another relation to ordinary conditioning which justifies the

above definitions is the fact that, for bounded Borel sets B-S,

c -Bc iA B ) (4) I;q , ,u : u B = O .-.

cc

Here B-- and BCF; denote the restrictions of to B and its complement /''

Bc . Implicit in (4) is the fact that the denominator on the right

is a.s. finite and positive. When the Palm distributions Q exist,

(4) expresses the intuitively obvious fact that conditionina on

-B[=u is equivalent to conditioning first on and then, in

the resulting conditional distribution, on the event 1(c,-F)B=O0.

3. Gibbs and Pa2angelou kernels

The so called first order Papangelou kernelr;=P of a point process

was introduced by the present author in 1978 through the formula
PrB=I iBC .' ']_

i a.s. on .B=0 - (5)
P B=O BC':

plus the requirement that n(supp f)=O. It may be shown that this:.. -

a.s. nquely defines a locally finite random measare '- on S.

= ... ", the n-th order Papangeiou kernel is a random measure .n

g i v e n b yc - .. .'P --B = =B =1, B=n B c

(B ... .B ) =- 1 n on-B=O-nlB1 n ca

for disjoint subsets B1 ...,Bn of B, plus the requirements that then]
*. .-..

4 -... . .v. .,. -" ," . .... . '""".......



one-dimensional projections of should not charge supp -,, and
nn

:urther that all diagonal planes in Sshould have measure zero.

The -final step is to define the Gibbs kernel r as the random

measure on the space of finite counting measures on S, given by

7 B=BccO1 a.s. on -B=O , (7)

aanwith an extra reouiremnent that 7 should a.s. be restricted

tc easures u with uisucp E)=0. It is easy to check that Fand the

are felatec throuah the formula

(A) + 16 n :n~ a.s., ()-

we -z~ut 'ther _-nterestina facts aetesrr

mul,:tiol icativity

m V mn - IM m) n(1)

where *-' denotes the Papangelou kernel of the point process

+ 4. + ,S and further the inequality

EfC( ) > E ~f(E +u) 1,,uB= 0fL (da) ; B=03. (10)

It may be shown that equality holds in (9) and (10) whenever

( P9: EB=0 B C~j>- a.s. for bounded Bz S. (1

In that case, the random measures may be obtained from the '.-

corresponding Campbell measures C by disintegration in the secondn

variable:

Cn (B-KA) -ErUB c-A] (12)

In this sense, the Papangelou kernels may be regarded as 'duals'

to the reduced Palm measures. Under (Z) , even the Gibbs kernel

may be obtained through disintegration of a suitable measure, namely

tne so called compound Campbell measure C, aiven by.

C (M A) =:M x. Ki ( M A), 1) ~ .
n=0 1 5n

where M is a set of finite counting measures. Here the term with
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index 0 should be interpreted as 1\0eM'P%\EAl, and the disintearation

of C is given by ..

C(MxA) = E T(M); EA]. (14)

The measure C may also be defined directly through the formula

C(M xA) = E I l.(>EM, -uEA , (15)
ucg

where the summation extends over all finite counting measures u<r.

This shows in particular that C is symmetric whenever is a.s. "*

finite. Since the Palm measures and the Gibbs kernel were both

obtained by disintegration of C, but in different directions, the

two kernels must be essentially equal, apart from a normalization. .

In fact, it may be shown that, for finite .,

q (M)
-(M) a.s. (16)

In this sense, the sets of Palm measures and Papangelou kernels

may thus be considered as 'self-dual'. It is interesting to compare

the above fact with formula (4).

We conclude this section by indicating the role of the Gibbs

and Papangelou kernels in statistical mechanics. Here it is assumed

that each In is absolutely continuous with respect to Lebesgue

measure, and admits a strictly positive density Yn" The process

-log Yn(l.... ,s ) is then interpreted as the local energy required

to add new particles at sl' ....'sn Under the physically reasonable

assumption (1) in (Ii), formula (9) turns into an equality,

expressing simply the conservation law for energy. Needless to say,

the Cibbs kernel is named after J.W. Gibbs, the founder of statistical

mechanics, in whose writincs it occurs implicitly.

4

. . . .. 'J.~t -,*.• *



4. Local conditionina "., .

A point process on R+ may be reaarded as a (local) submart-ngale ' "-

with respect to its natural filtration (7), and therefore has a -

Doob-Meyer decomposition into a predictable and non-decreasinc

component , and a local martingale C-a. It is natural to identify
-- 4

, and its compensator with the associated random measures, and

A

E Nd Ej Vdg , -,

valid for arbitrary predictable and non-negative processes V.It

is well-known that can also be constructed explicitly through discre - "

approximaticns of the type

N nIt = lia iP[t. t tj_l P* t ],1) ...

where 0=t <t <* ..<t=t, and it is assumed that the mesh size of the

n-th partition tends to zero.

In general spaces, it is natural to imitate the above procedure

by forming the sums .

[ [[inj> 0  [nj C . *"'p 7c c i n (19) "'''Pr I .=licn <_ I e- E ' Inj! i c....
j n3 j -- 3 "'j

where the In for fixed n form a partition of S, and where the.._. ;"-

summnation extends over all In in a fixed set B. Assuming that '."-.

(I )is a refinement of (I ),that the diameters of I .tend."--
n+l,j nj n] ..

uniformly to zero, and that B is a finite union of sets I it ...
n j """ "

may be shown that the first two sums in (19) (and even the third

when E5E< -) converge a.s. to some random variable B, where is

a locally finite random measure on S, which is independent of (I ,.

and related to the Papanaelou kernel m via the formulas

r(ds) ... .,
5(ds) V (s) =, s~supp f. (20)

The random measure 5 is known as the conditional intensity of .

The name Papangelou kernel for derives from the fact that .. ,.

Cr . ,'-.. ........ "..... . " " " " " ...7 **..... . .-- *.* . . . .. - - " " - * * * * 4% . - "'". % " "



F. Papangelou was the first, in 1974, to prove convergence of one

of the sums in (19), in a snecial case when 5=1. He also estabi:shel "-.

the important fact that, for S of the form R×S', is a mixture

of stationary Poisson processes iff is a.s. shift invariant. This

fact has some rather remarkable consequences in stochastic geometry.

By the similarity of (18) and (19), one may expect that even

the conditional intensity 4 may be characterized, like in (17) ,

as a dual projection with respect to some suitable o-field z in

the product space Sx-L, wherel denotes the underlying probabilitv *

space. In fact, van der Hooven showed in 1982 that Zcan be chosen

as the exvisible s-field generated by all sets of the form BxF,

where B is a bounded Borel set in S, while F lies in the completion

of C(BC ) . Thus, in analogy with (17), can be characterized as

the a.s. uniaue 'exvisible' random measure such that

EfZd = EJZd (21) I
holds for all 'exvisible' and non-negative processes Z on S.
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